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It will be shown that if X; , X, and Y are subspaces of a separable normed
linear space T for which X;C X,, Cl (X, + Y) has infinite codimension,
and d(X;, Sy) = 0 if Sy is the unit sphere of a subspace H of Y with finite
codimension in Y, then for any positive € there is a subspace ¥ of T such
that Y is e-near to ¥ and ¥ is a quasicomplement for all subspaces Z such
that X; CZCCl (X, + Y). If X and Y are subspaces of T for which X has
infinite codimension, then X has a quasicomplement ¥ for which either ¥ is
e-near to a complemented subspace of ¥ or X N Yis e-near to ¥ (Theorem 2).
If X and Y are closed quasicomplements but not complements in a separable
reflexive Banach space, there exist subspaces Y; and Y, suchthat Y, CYCY,,
Y, is of infinite codimension in Y, Y has infinite codimension in Y, , and Z
is a quasicomplement for X if ¥; CZ C Y, . The existence of ¥, does not
depend on reflexivity.

By a subspace X of a normed linear space T being e-near to a subspace Y
we shall mean that there is an isomorphism L of X onto Y with

fx —Lx)|| < ellx] for all x. (1)

It is instructive to note that if X is e-near to Y, then it follows from (1) that
LG < (1 + €l x|l Also,

hxll <lx =LY+ L&) < ellx (| + | L&) I,

so that (1 —€) || x| < || L(x)|. Thus X and Y are e-isometric in the sense
described in [3], i.e.,

I=9lxI<IL®I<A+lx].

A complement for a subspace X of a normed linear space T is a subspace
Y forwhich X + Y = TandX N ¥ = {0}. A quasicomplement for a subspace
X of a normed linear space T is a subspace Y for which X 4+ Y is dense in T
and X N Y = {0}. If T is complete, then quasicomplements X and Y are
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complements if and only if there is an € > 0 for which || x — y | > €| x| if
xeXand ye Y.

It was shown by Murray that all subspaces of reflexive separable Banach
spaces have quasicomplements [6, p. 93, Corollary]. He also showed that if
X and Y are quasicomplements that are not complements, then X has
quasicomplements Y, and Y, for which ¥; C Y C Y, and neither Y, nor Y,
is Y [6, p. 94, Theorem].

The theorem of Murray was generalized by Mackey, who showed that all
closed subspaces of a separable normed linear space have quasicomplements
[5, p. 322). Lindenstrauss has shown that if X is a closed subspace of a
Banach space B, then X has a quasicomplement in B if both X and B are
w-compactly generated [4], i.e., if there is a w-compact set .S whose closed
linear span is X (or B). However, there exist Banach spaces with subspaces
that have no quasicomplements [4], although all subspaces of /* have
quasicomplements [7].

Guarii and Kadec proved that if X and Y are infinite-dimensional subspaces
of a separable Banach space B for which X C Y and Y has infinite codi-
mension, then ¥ has a quasicomplement X that is e-isometric to X, and
also X has a quasicomplement ¥ that is e-isometric to Y [3,p. 968, Theorem 4].
It follows from this theorem that any infinite-dimensional subspace of a
separable Banach space has a quasicomplement with a basis and that any
separable Banach space has subspaces X and Y that are quasicomplements
and have bases [3, p. 968, Theorem 5 and Corollary 2}. Moreover, if € > 0
and X is an infinite-dimensional subspace of a separable Banach space B
in which X has infinite codimension, then X has a quasicomplement Y that
is e-isometric (and e-near) to X. Also, any separable Banach space that
contains a reflexive subspace (or a subspace isomorphic to Hilbert space) is
the closed linear span of two reflexive spaces with bases (or two subspaces
isomorphic to Hilbert space); if the space is nonreflexive, it also is the closed
linear span of two nonreflexive subspaces with bases.

Suppose X is an infinite-dimensional subspace of a separable Banach
space B in which X has infinite codimension. The argument to be employed
in Theorem 1 via biorthogonal sequences can be illustrated simply by the
following outline of the proof via bases that if ¥ CX, if X has infinite
codimension, and if Y has a basis {y,}, then X has a quasicomplement ¥
that is isomorphic to Y. It is well known that {y,} is a basis for its closed
linear span if and only if there is an € > 0 for which

n+p

z &Y

1

=€

Z a;y;
1

for all n, p, and @y, Gz ..., ayp [1, p. 1115 2] I 57 || @, I/l 7 || < ¢, then
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{yn + wn} is a basis for its closed linear span and Ya,y; — Y a:(y: + w,)
defines an isomorphism of ¥ onto a subspace ¥ of Cl [lin {y, + w,}]. Now
choose {w,} so that lin {w,} is dense in B, 35 1l /Il ¥u |l < ke, and

(a) d(wn , lin {X: Wi 5000y wn—l}) = €, >0,
(b) Y o]l < den.
n+1

Let Z = Cl [lin {y, + w,}]. Then X + Z contains each w, and therefore is
dense in B, so that X + Y is dense in B. If ueX N Z and u # 0, then
U= 2 a(y; + w;).

1

Since YCX, it follows that ¥y a;w; € X. If n is chosen so that |a,| >
4 sup | a; |, then it follows from (a) that

This is contradictory to the following inequality obtained from (b):

a0
Z a;w;

n+1l

a0
2 a;w;

n+1

> %En sup I a; |

© n-1
anwy — (Z a;w; — Z az‘wi)
1 1

< %En Sup I a; I

Before stating the principal theorem, certain more-or-less known facts are
summarized for completeness in the next two lemmas. A biorthogonal
sequence is a sequence {(y, , g,)} for which gy;) = 8;; it is normalized if
| ¥ || = 1 for each n; it is fundamental for Y if lin {y,} is dense in Y; and it is
total for Y if y = 0 whenever g,(y) = O for all y.

LemMA 1. Let Y be a separable subspace of a normed linear space T and
{n » g2)} be a fundamental biorthogonal sequence for Y. If 0 < e <}, if

S gl sl < e, @
1

and if ¥ = Cl [lin {y, + w,}], then

@ &l < llge /X — & < || &xll/(1 — 2¢), where §, is the continuous
linear functional on Y for which §,(y; + w;) = 8;

(ii) {g.} is total for Y if and only if {g;} is total for Y;

(iii) Y is e-near to Y.
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Proof. To prove (i), note that if 1 < k < n, then

] <lsel|Sai] 3

It follows from this and (2) that

i+ @) o =2 lat ol
1
il = 13 @ 31 a1 sl
1 1
=(1 — ¢ Zaiyi 2 —e)|al/lgel.
1

Thus | g [Zf a; (y: + )}l = | ax | < Zf a; (i + @) |l g /(1 — ¢) and

g = J&el @)

— €’

From this, 35 || & || ]| @: || < €/(1 — €), so that it follows from (4) that

lenl <t o < Tlal

To prove (i), suppose that {Z,} is not total for ¥, so that there is a u with
lu]l = 1 that belongs to Cl [lin{y; + w,: i > n}] for all n. Then for any
8 > 0 there is a finite sum for which

lu—2ab: (i + @)l <3,
|| <3 &ll+ 18| <A+)&I<U+9)lgl/(—e, and

<8+1+82ngzunw.n

Since § was arbitrary and the last summation approaches zero as n increases,
it follows that u € Cl {lin {y, : i = n}] for all n and {g;} is not total for Y. It
follows by a similar argument that {£;} is not total for ¥ if {g,}is not total for Y.

To prove (iii), define a linear map L from lin{y,} onto lin{y, 4+ w,}
by letting

L (21:‘ a,-y,-) = iai(yi + ).
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It follows from (2) and (3) that

Yy~ Y ai+ )| =

ol

Therefore, for all y in lin{y;}, ly — L) || < elly|. If L is extended to
be continuous on Y, then L and L-! are continuous and the range of L is Y.

| < e sup u 2 u

LEMMA 2. Let Y be a separable normed linear space and suppose that to
each subspace H of finite codimension in Y there is associated a nonempty
subset Py of the unit sphere of H. Then Y has a normalized biorthogonal
sequence {(v,, , g,)} that has the properties:

() {yn} is fundamental and {g,)} is total for Y,

(i) Yski1€ Py, where H={y:giy) = 0 fori <3k + 1}
(iii) || gn !l < 27 for each n.

Proof. Let {n,} be dense in the unit sphere of ¥ and {U,} be a sequence
of balls with radii 1/6 and 7, the center of U, for each n. Choose {(y, , fu)}
inductively so that || y, || = | fu |l = fa(¥») = 1 for each n and

@) fi(y,) =0ifi <m
(b) yaps1 € Py, where H ={y : fi(y) = 0fori <3k + 1},

(©) Nrra €lin{yr, Yooy Yaraot if £ =0,

(d) |l Yskes — Mesa | < 1/3 if Uy, has any nonzero member y for which
f(y) = 0ifi <3k + 2.

Whatever the choices of f; ,..., fa_1 , there is a y,, of unit norm that satisfies
(2) and an f,, with || f,, | = fu(¥») = 1; by assumption, condition (b) can be
satisfied; (c) can be satisfied by letting y;.., be a linear combination of
{I1 seers Yarr1s Nurry If Npgr EHD{Ys 5. Yarsa); a little computation shows
that (d) is satisfied if yg,.s = ¥/l ¥ |l.

It follows from (c) that {y,} is fundamental. Let {g,} be defined so that
gy = 8/ If {g,} is not total, there is a y with || y|| = 1 for which
yeClflin{y; : i > n}] for all n. Then f,,(y) = 0 for all n, so that it follows
from (d) and the density of {7,,} that there is a y,; s for which ||y — yer,all < £
Then |faris(y — Varss) | <3 and firis(Vsie) = 1, which imply that
| foess(¥) | > 4.

Now suppose there is an 7 for which || g,, || > 2*~*. Then there are numbers
a, ,..., d,_; and an A such that fi(h) = 0 if i << n and

Vn — ( Z_l a;y; + h) ” <21,
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By using f;, we %btain lay ] <2t If |a;| <2t for i <k <n, then
it follows from | Zl_lai f(¥e) + ar | < 21" that
k-1

| a ‘ < -m L z 2i-n 2k—n,

=1
so that | a; | < 2¢-* for i < n. Therefore, it follows from

n—1

w = T ahi(r)| <2

that 1 <2t 4+ 37 -t fa;| <21 + ZZ; 2i-m = 1, which completes the
proof.

If X and Y are subspaces of a normed linear space and X N Y is infinite
dimensional, then the set Py of the preceding lemma could be the unit sphere
of X N H. In the next theorem, this is generalized somewhat so that Py is
merely close to X.

THEOREM 1. Let Xy, X, , and Y be subspaces of a separable normed linear
space T for which X, CX,, CUX, + Y) has infinite codimension, and
d(X,, Su) = 0if Sy is the unit sphere of a subspace H of Y with finite codimen-
sion in Y. Then for any positive € there is a subspace ¥ of T such that Y is
e-near to Y and Y is a quasicomplement for all subspaces Z such that

X, CZCCI(X, + Y).

Proof. There is no loss of generality if we assume that ¢ << . Let {U,}
be a sequence of balls with radii less than 1 and centers on the unit sphere
of T for which lin{w,} is dense in T if u,, € U, for each n. Let p,, be the radius
of U, and let {B,} be a sequence of positive numbers for which

@ Xy 218, <,
(b) 2718, < puPn (1 —2€)/(128 - 2i-7) if i > n.

If H is a subspace of Y with codimension 3k, let Py of Lemma 2 be
Py={h:|hil=1 and d(h X1) <} prBses1}-

It then follows from Lemma 2 that there is a normalized biorthogonal
sequence {(y, , g,)} for which {y,} is fundamental and {g,} is total for Y,
dVs41 > X1) < } prPsrsr» and || g, 1l < 271 for all n. Choose a sequence
{w,} inductively so that

(c) 38, <l w, |l < B, for each n,
() d(wn s lln{Xz + Y, 0,0 wn—l}) > % Pr | wn |l for all n,
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(e) for each k, there is an x5, in X; and pgyy in T such that some
scalar multiple of 4., belongs to Us,,; and

Varr1 T Waks1 = Xgpgr + Mgrsr -

Clearly (c) and (d) can be satisfied for all n, if these and (e) can be satisfied
for n = 3k + 1. Suppose that w,,..., wy have been chosen and let
V =1lin{X, + Y, wy ..., wg}. Since the center of U, has unit norm,
fu ) <1+ p, <2ifu, elU,. Choose u, so that

ltn — vl >5%pn>Fpallunll if veV. &)

Let
_ Ugp1a 6
Hae+1 = Bak+1 ” Ugp i1 ” ( )

Choose an xg;., in X; for which

[l ¥ars1 — Xari1 ll <} prBais - @)

If waryy = Xapy1 + Marer — Vare1 » then (e) is satisfied and

I Mo | — | X341 — Varsr | < || @wgpa | K Mare | T+ | X341 — Vawra b

so that it follows from (6), (7), and pg,; < 1 that

% Barvn <l wgipr | < Baria ®)
and (c) is satisfied. To show that (d) is satisfied, note first that if » € V then
| wgin = 01l = [l Xorez + Bares — Yorea — o
Z | parr — 0l — [ Xapa1 — Yaesa Il
It now follows from (5) and (7), and then (6) and (7), that

| wsrqr — 01l = % papsa Il papsa | — %P3k+1,33k+1
1
k)

Pa+1Bars1 > ¥ pars1 | Warsa s

so that (d) is satisfied.
Let ¥ C Clflin{y,, + ,}] be the image of ¥ for the linear map L defined
by letting L(Y; a;y;) = 37 a{y; + w,) and extending L to Y. Since

lgdllell <) 2028, <
1 1

it follows from (iii) of Lemma 1 that Y is e-near to Y. It follows from (e)
and the choice of the spheres {U,} that X; 4+ ¥ is dense in T, and from this
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that Z -+ ¥ is dense in 7'if X; C Z C Cl (X, + Y). To complete the proof, we
need only show that Cl (X, + ¥) N CI(Y) = {0}. Suppose that v € CI(X, + ¥)
N CI(Y) and || v || = 1. For each i, let §; be the continuous linear functional
on Y for which §i(y; + w;) = §; for all j. Then it follows from Lemma 1 that
{&,} is total for CI(Y). Thus 0 < o < 1 if

_ | &i(v) |
7= SPG

Choose n such that | §,(v) | > % o|| £, || and then choose a finite sequence
{b;} for which

o= [$2@0:+ @0 + 5 b0+ @] < ©

n4l

where « is the smaller of (1 — 2¢) ap,8,/[64(1 — €)] and o. Then

Enrn — [u - z FOO: + @) — EnOpa— ) bz-y,]

n+l

< K-+ Z | bsew; ).

n+l

Since v € Cl (X, + Y), it follows from this inequality, (d) and the choice of
n that

1
16 P01 &nllll @l <k +- 2 1o 1.

n+l

If i > n, it follows from (9) that | §;(v) — b; | << k|| &; ||, so that

b} <l &ll+ ol &l

and
6Pn0”gn” fwall < &4+ 0) Y 118wl
n+l
Now it follows from (i) of Lemma 1, || g, ||| wa || > 3 B,k < o, g: ]| < 2872
and (8) that
1 — 2e
——--——0nn<K+—-— Il &: -1
32(1 P ﬁ nZ{-:l n+1 ﬁ

This and (b) imply that

1—2¢ — 2e
3—2(1"—””"’3" <<t @i—e 64(1 — o opnbn -
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Since k < (1 — 2¢) 0p,B,/[64(1 — €)], we have a contradiction and it has
been proved that Cl (X, + ¥) n Cl (¥) = {0}.

COROLLARY 1. Let X and Y be subspaces of a separable normed linear
space T for which X N Y is infinite dimensional and CI(X + Y) has infinite
codimension. Then for any positive ¢ there is a subspace ¥ of T such that
Y is e-near to Y and Y is a quasicomplement for all Z such that

XNnYCZCCX + Y).

COROLLARY 2. Let H be an infinite dimensional subspace of a normed
linear space T and let W be any closed subspace of infiinite codimension in T
that contains H. Then for any positive € and any subspace Y with HC YC W,
there is a subspace Y such that Y is e-near to Y and Y is a quasicomplement
for all Z such that HC ZC W.

Proof. For Corollary 1,let X N Y = X; and Cl(X + Y) = X, and apply
Theorem 1. For Corollary 2, apply Theorem 1 again with X; = H and
X, = W.

The next theorem summarizes the types of quasicomplements of X that
can be built from an arbitrary subspace Y.

THEOREM 2. Let X and Y be subspaces of a normed linear space T for
which X has infinite codimension. For any € > 0, X has a quasicomplement Y.
If CI(X 4+ Y) has finite codimension, then Y can be chosen, so that

() If X 0 Y is finite dimensional, Y is e-near to a complemented subspace
of ¥
Whatever the codimension of CI(X + Y),
(i) f X N Y [or X N Y] is infinite dimensional, then X N Y is e-near
to Y and Y is a quasicomplement for all Z such that
XNYCZCX[orXNnYCZCX].

If X is infinite dimensional and CAX -+ Y) has infinite codimension, then Y
can be chosen so that

(iii) CI(X -+ Y) is e-near to Y and Y is a quasicomplement for all Z such
that XCZC CX 4 Y); or

(iv) if X n Y [or X N Y] is infinite-dimensional, then ¥ can be chosen
so that Y is e-near to Y and ¥ is a quasicomplement for all Z such that

XNnYCZCCUX + Y)[or XN YC ZCCIX + Y)).

Proof. (i) If CI(X + Y) has finite codimension and X N Y is finite
dimensional, there is a subspace Y, of Y which has finite codimension in ¥
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and for which X n Y, = {0}. Also, CI(X - Y,) has finite codimension in 7,
so that there is a finite-dimensional subspace ¥ of T such that Y, + Vis a
quasicomplement of X. If U is a finite-dimensional complement of Y, in Y,
then V can be chosen so that U is sufficiently near a subspace U; of V that
Yis e-near to Y, -+ U, .

(i) Let H of Corollary 2 be X N Y (or X N Y) and let W be X.

(iii) Let H of Corollary 2 be X and both W and Y be CI(X + Y).

(iv) This is Corollary 1 applied to X and ¥ (or X and Y).

It was shown by Murray [6, p. 94, Theorem] that if X and Y are quasi-
complements but not complements in a reflexive Banach space, then there
are quasicomplements Y; and Y, for X such that Y, C Y C ¥, and neither Y;
nor Y, is equal to Y. Actually, the constructions used yield Y; of finite
codimension in Y and Y of finite codimension in Y, . Mackey notes [5,
pp. 324-325] that reflexivity is not needed, but that completeness is critical
for Murray’s arguments. The next two theorems strengthen these results.

THEOREM 3. Let X and Y be closed quasicomplements in a normed linear
space T. If the closures of X and Y in the completion of T are not comple-
ments, then X has a closed quasicomplement Y, for which Y,CY and Y,
has infinite codimension in Y.

Proof. Since the closures of X and Y in the completion of 7" are not
complements, d(X, Sg) = O if Sy is the unit sphere of a subspace H of
finite codimension in Y. Therefore it follows from Lemma 2 that Y has a
normalized biorthogonal sequence {(y,, , g,)} for which

(a) {y.} is fundamental and {g,} is total for ¥,
(0) dsess > X) < Bk + DL 27%,
(©) |l gn |l < 271 for each n.
Let p(n, i) be a one-to-one map of ordered pairs (n, i) of positive integers

onto the set of positive integers such that for each » the sequence {p(n, i)}
contains infinitely many integers of type 3k + 1. Let

Ap(n, = 2722041, (10)

let Y; be the closed linear span of all Ay, 0V p(n.9) — Voin.ss1) » and Z; be the
closed linear span of all y,,,q) . Clearly Ci(Y; + Z,) = Y.

To show that Y; has infinite codimension in Y, it is sufficient to show that
Y, N Z, = {0}. Suppose ye Y; N Z, and || y|| = 1. Since {g,} is total for
Y and y € Z, , there exist a, 7 0 and » such that

y=a )‘aa(n,l)yp(n,l) +h,
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where he Clflin{y; :i > p(n, 1)}]. Since yeY,, there is a sequence of
numbers {a;} such that, for any £, there is an 4 for which

k
i
9 = (£ atnast00 = Datnssi) + W] <jlaizoen,an

1=1

where s e Cllin{A, 409 — Yotmasn :m =1 or i >k} Since yeZz,, it
follows that g,(,.:en (¥) = 0 if i > 1 and therefore that we can use (c)
to obtain

la; — AP(n,z‘+l)ai+1 | < %|ay|20tmi-vnd for 1 < i <k.

Now multiply by suitable X’s and add, to obtain

k
a, — (n ’\m(n,i)) ay

i=2

k=1
<oy | 200 (2501 4 20 o 2000 ] Mote)
=2

<1la |22 (2p(n.2) + Ek z—p(n.i))

=3
<}lay | Y27 = }|al,
0
o that

k _ X
lae] >}l ay] [H Am,n] "= gy | [] 22, a2)

§=2 §=2

It follows from (c) and (10) that
2 Al gl = Z 221 < Z 2-206+1)i-1 l
1 1 1 8
This together with (11) and (i) of Lemma 1 implies that
8
el <A+ 31a ] 277" ) 5l gptnn | < (14§ @y [y 22050, (13)

Whatever the value of a, , (12) and (13) are contradictoty if k is sufficiently
large.



158 JAMES

To show that ¥, is a quasicomplement for X, it is sufficient to show that
X + Y, is dense in 7. To do this, it is sufficient to show that y,(,.; belongs
to CI(X 4 Y;) for each n. Let p(n, k) be of type 3p -+ 1. It follows from (b)
that there is an x in X for which

p(n,k)
| Yotn — X1 < (p(n, k)7 1_[ 2%,
i=2
Let
k—1 J 1
y = Z (H Azz(n.i)) (’\y(n.a‘)yp(n,a’) — Vpn.i+1)

i=1 \i=1
k—1 -1
= Vo)) — (H /\m.i)) Volnt) -
=1
Then y € Y; and

k—1 -1 k—1 -1
Vola) — Y — (H )‘p(n.i)) x “ = | Yotnwy — x|l (H Ap(n,i))
f=1

g1

k
= [ Yoty — x| [] 2220n0

=2

p{n.x) )
< Yoty — x| JT 2%
=2

< (p(n, k).
Since p(n, k) can be arbitrarily large, this completes the proof of Theorem 3.

THEOREM 4. Let X and Y be quasicomplements in a separable reflexive
Banach space B. If X and Y are not complements for B, then X has a quasi-
complement Y, for which Y C Y, and Y has infinite codimension in Y, .

Proof. Let X’ and Y’ be the sets of continuous linear functionals that
are identically zero on X or Y, respectively, Then X' N Y’ = {0}, since
X + Y is dense in B. Also, CI(X’ + Y') = B¥*, since otherwise there would
be a nonzero z in B such that f(z) = 0 if fe CI(X’ + Y’) and this would
imply that ze X N Y. Thus X’ and Y’ are quasicomplements in B* (also see
[6, p. 85, Corollary]). Let w € BN ~ (X -+ Y). Then it is easy to see that X
and lin(¥, w) are quasicomplements for T, so that X* has a quasicomplement
that is a proper subspace of Y’. This implies that X’ and Y" are not comple-
ments and it then follows from Theorem 3 that there is a closed subspace Z’
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of Y’ that is of infinite codimension in Y and such that Z’ is a quasicomple-
ment for X’ in B*. Let Y, be the set of all y in B with f(y) = 0 for all fin
Z'. Since B is reflexive, Y has infinite codimension in Y, . Since X’ and Z’
are quasicomplements for B* and B is reflexive, it follows from the first
part of this proof that X and Y, are quasicomplements for B.

It is not clear whether reflexivity is needed in Theorem 4. However, it
seems reasonable to conjecture that the theorem is false without this
hypothesis.

The next corollary follows from Corollary 1 and Theorems 3 and 4.

COROLLARY 3. Let X and Y be subspace of a separable reflexive Banach
space. If X N Y is infinite dimensional and C(X + Y) has infinite codimension,
then there are subspaces Xy, X, , Yy, ¥ and Y, such that

() X; C X N Y and X, has infinite codimensionin X N Y,Cl(X + Y)C X,
and C(X + Y) has infinite codimension in X, ;

(i) Yis e-nearto Y,

(ii) Y, C Y CY,, Y, has infinite codimension in ¥, and ¥ has infinite
codimension in Y, ; .

(iv) U and V are quasicomplements if X, CUCX, and Y,CVCY,.

COROLLARY 4. Let B be a separable Banach space that has an infinite
dimensional subspace isomorphic to Hilbert space. Then for any € > 0 there
are subspaces Hy , Hy , Hy , and H, isomorphic to Hilbert space and such that
H, is e-near to H,, H, C H,, H,C H,, H, has infinite codimension in H, ,
Hj has infinite codimension in H,, and subspaces X and Y of B are quasi-
complements if

H,CXCH,and H;C YCH,.

Proof. Let H, be any subspace that is isomorphic to Hilbert space and
has infinite codimension in B, and let H, be any infinite-dimensional subspace
of H, that has infinite codimension in H, . It then follows from Corollary 2
that there is a subspace H, such that H, is e-near to H, and H, is a quasi-
complement for all X such that

H,CXCH,.

Theorem 3 gives a subspace H; of H, that has infinite codimension in H,
and is a quasicomplement for H, . If H; C XC H, and H,C YC H,, then
XNnYCH,nH, ={0}. Since X+ YO H, + Hy, X+ Y is dense in B
and X and Y are quasicomplements.
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