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It will be shown that if XI , X 2 and Yare subspaces of a separable normed
linear space T for which Xl C X 2 , CI (X2 + Y) has infinite codimension,
and d(XI , SH) = 0 if SH is the unit sphere of a subspace H of Ywith finite
codimension in Y, then for any positive e there is a subspace r of T such
that Y is e-near to rand r is a quasicomplement for all subspaces Z such
that Xl C Z C CI (X2 + Y). If X and Yare subspaces of T for which X has
infinite codimension, then X has a quasicomplement r for which either Y is
e-near to a complemented subspace of r or X n Y is e-near to r (Theorem 2).
IfX and Yare closed quasicomplements but not complements in a separable
reflexive Banach space, there exist subspaces YI and Y2 such that YI eye Y2 ,

Y1 is of infinite codimension in Y, Y has infinite codimension in Y2 , and Z
is a quasicomplement for X if YI C Z C Y2 • The existence of YI does not
depend on reflexivity.

By a subspace X of a normed linear space T being e-near to a subspace Y
we shall mean that there is an isomorphism L of X onto Y with

II x - L(x) II ~ e II x II for all x. (I)

It is instructive to note that if X is e-near to Y, then it follows from (1) that
II L(x) II ~ (l + e) II X II. Also,

II x II ~ II x - L(x) II + II L(x) II ~ e II X II + II L(x) II,

so that (1 - e) II X II ~ II L(x) II. Thus X and Yare e-isometric in the sense
described in [3], i.e.,

(1 - e) II X II ~ II L(x) 1/ ~ (l + e) II X II·

A complement for a subspace X of a normed linear space T is a subspace
Y for which X + Y = TandX n Y = {O}. A quasicomplement for a subspace
X of a nonned linear space T is a subspace Y for which X + Y is dense in T
and X n Y = {O}. If T is complete, then quasicomplements X and Yare
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complements if and only if there is an e > 0 for which II x - y II > e II x II if
XEX andy E Y.

It was shown by Murray that all subspaces of reflexive separable Banach
spaces have quasicomplements [6, p. 93, Corollary). He also showed that if
X and Yare quasicomplements that are not complements, then X has
quasicomplements Y1 and Y2 for which Y1 eye Y2 and neither Y1 nor Y2

is Y [6, p. 94, Theorem].
The theorem of Murray was generalized by Mackey, who showed that all

closed subspaces of a separable normed linear space have quasicomplements
[5, p. 322]. Lindenstrauss has shown that if X is a closed subspace of a
Banach space B, then X has a quasicomplement in B if both X and Bare
w-compactly generated [4], i.e., if there is a w-compact set S whose closed
linear span is X (or B). However, there exist Banach spaces with subspaces
that have no quasicomplements [4], although all subspaces of [00 have
quasicomplements [7).

Guarii and Kadec proved that if X and Yare infinite-dimensional subspaces
of a separable Banach space B for which XC Yand Y has infinite codi­
mension, then Y has a quasicomplement g that is e-isometric to X, and
also X has a quasicomplement Y that is e-isometric to Y [3, p. 968, Theorem 4].
It follows from this theorem that any infinite-dimensional subspace of a
separable Banach space has a quasicomplement with a basis and that any
separable Banach space has subspaces X and Y that are quasicomplements
and have bases [3, p. 968, Theorem 5 and Corollary 2]. Moreover, if e > 0
and X is an infinite-dimensional subspace of a separable Banach space B
in which X has infinite codimension, then X has a quasicomplement Y that
is e-isometric (and e-near) to X. Also, any separable Banach space that
contains a reflexive subspace (or a subspace isomorphic to Hilbert space) is
the closed linear span of two reflexive spaces with bases (or two subspaces
isomorphic to Hilbert space); if the space is nonreflexive, it also is the closed
linear span of two nonreflexive subspaces with bases.

Suppose X is an infinite-dimensional subspace of a separable Banach
space B in which X has infinite codimension. The argument to be employed
in Theorem 1 via biorthogonal sequences can be illustrated simply by the
following outline of the proof via bases that if Y eX, if X has infinite
codimension, and if Y has a basis {Yn}, then X has a quasicomplement Y
that is isomorphic to Y. It is well known that {Yn} is a basis for its closed
linear span if and only if there is an e > 0 for which

for all n, p, and a1 , a2 , ... , a n+7J [1, p. 111; 2]. If L~ II W n II/II Yn II < te, then
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{Yn + wn} is a basis for its closed linear span and LaiYi -+ Labi +Wi)
defines an isomorphism of Yonto a subspace Yof C1 [lin {Yn + Wn}]. Now
choose {wn} so that lin {wn} is dense in B, L~ I[ Wn II/II Yn II < i€, and

(a) d(wn , lin {X, WI, ••• , Wn_l}) = €n > 0,

00

(b) L II Wi [I < t€n .
n+1

Let Z = C1 [lin {Yn + wn}]. Then X + Z contains each Wn and therefore is
dense in B, so that X + Yis dense in B. If u EX n Z and u =F 0, then

00

u = Lai(Yi + Wi)'
I

Since Y CX, it follows that L~ aiwi EX. If n is chosen so that Ian I >
! sup I ai I, then it follows from (a) that

This is contradictory to the following inequality obtained from (b):

II f aiwi II < !€n sup I ai I·
n+1

Before stating the principal theorem, certain more-or-1ess known facts are
summarized for completeness in the next two lemmas. A biorthogonal
sequence is a sequence {(Yn , gn)} for which gi(Yi) = 0/; it is normalized if
II Yn II = 1 for each n; it is fundamental for Yif lin {Yn} is dense in Y; and it is
total for Y if Y = °whenever gn(Y) = °for all y.

LEMMA 1. Let Y be a separable subspace of a normed linear space T and
{(Yn, gn)} be a fundamental biorthogonal sequence for Y. If °< € < t, if

00

L: II gi I1I1 Wi II < €,
1

(2)

and if Y = C1 [lin {Yn + Wn}], then

(i) 1/ gk II < II gk 1//(1 - €) < I[ gk 1//(1 - 2€), where gk is the continuous
linear functional on Yfor which giYj + Wj) = Oki;

(ii) {gil is total for Y if and only if {gil is total for Y;
(iii) Y is €-near to Y.
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Proof To prove (i), note that if 1 ~ k ~ n, then

I ak I ~ II gk IIII f aiYi II·
I

It follows from this and (2) that

1\ f a;(Yi + Wi) 1\ ?: II f aiYi 11- f I ai III Wi II
I 1 1

?: II f aiYi II - II i aiYi II f II gi III1 Wi II
I I I

(3)

(4)

?: (1 - e) II f aiYi II ?: (1 - e) I ak IIII gk II.
I

Thus I ik [L; ai (Yi + Wi)] I = I ak I ~ II :L; ai (Yi + Wi) 1111 gk 1I/(l - e) and

II ik II ~ il~ l~ .

From this, :L~ II ii 1\11 Wi II < e/(l - e), so that it follows from (4) that

Ilikll
II gk II ~ 1 - e/(l - E)

To prove (ii), suppose that {in} is not total for Y, so that there is a u with
II u II = 1 that belongs to CI [lin {Yi + Wi : i ?: n}] for all n. Then for any
o> 0 there is a finite sum for which

II u - :L.. bi (Yi + Wi) II < 0,

Ibi I < 0 II ii II + I i;(u) I ~ (1 + 0)11 ii II ~ (1 + 0) II gill/(l - E), and

II u - Ln biYi 1\ < 0 + II Ln biWi II
1+0

< 0 + 1 _ E L II gi IIII Wi II·
n

Since 0 was arbitrary and the last summation approaches zero as n increases,
it follows that UE Cl [lin {Yi : i ?: n}] for all nand {gi} is not total for Y. It
follows by a similar argument that {i.} is not totalforY if{g.} is not totalfor Y.

To prove (iii), define a linear map L from lin {Yn} onto lin {Yn + w n}
by letting
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It follows from (2) and (3) that
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Therefore, for all Y in lin {Yi}, II Y - L(y) II :::;; Ell Y II. If L is extended to
be continuous on Y, then Land L -1 are continuous and the range of L is 'Y.

LEMMA 2. Let Y be a separable normed linear space and suppose that to
each subspace H offinite codimension in Y there is associated a nonempty
subset PH of the unit sphere of H. Then Y has a normalized biorthogonal
sequence {(yn , gn)} that has the properties:

(i) {Yn} is fundamental and {gn} is total for Y;

(ii) YSHI E PH, where H = {y : gi(Y) = 0 for i < 3k + I};

(iii) II gn II :::;; 2n-1 for each n.

Proof Let {1Jn} be dense in the unit sphere of Yand {Un} be a sequence
of balls with radii 1/6 and 1Jn the center of Un for each n. Choose {(yn ,fn)}
inductively so that II Yn II = Ilfn II = fn(Yn) = I for each nand

(a) fbn) = 0 if i < n;

(b) YSk+! E PH' where H = {y :fi(y) = 0 for i < 3k + I},

(c) 1Jk+! E lin{Yl , Y2 ,..., YSk+2} if k ~ 0,

(d) II YSk+S - 1Jk+!11 < 1/3 if Uk+! has any nonzero member Y for which
fi(y) = 0 if i ~ 3k + 2.

Whatever the choices offl ,... ,fn-l' there is aYn of unit norm that satisfies
(a) and anfn with IIfnll = fn(yn) = 1; by assumption, condition (b) can be
satisfied; (c) can be satisfied by letting YSk+2 be a linear combination of
{Yl ,... , YSk+! ,1Jk+l} if 1Jk+l ¢:.lin{YI ,... , YSk+l}; a little computation shows
that (d) is satisfied if YSk+S = ylll Y II.

lt follows from (c) that {Yn} is fundamental. Let {gn} be defined so that
gi(yj) = 8l If {gn} is not total, there is a y with II Y II = 1 for which
Y E CI[lin{Yi : i ~ n}] for all n. Then fn(y) = 0 for all n, so that it follows
from (d) and the density of{1Jn} that there is aYsk+S for which IIY - Yak-tsil < !.
Then IfSk+aCy - YSk+s) I <! and fSk+s(Ysk+s) = 1, which imply that
1.fak+3(Y) I > t·

Now suppose there is an n for which II gn II > 2n-1• Then there are numbers
a1 , ... , an-l and an h such thatfi(h) = 0 if i :::;; nand
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By using f1' we obtain I a1 I < 21- n. If I ai I < 2i- n for i < k < n, then
it follows from I L~-ladk(yi) + ak I < 21- n that

k-1
I ak I < 21- n + L 2i- n = 2k- n,

i=l

so that I ai I < 2i- n for i < n. Therefore, it follows from

!fn(Yn) - ~1 aJn(Yi) I< 21- n
1

that 1 < 21- n + L;-l I ai I < 21- n + L~::11 2i- n = 1, which completes the
proof.

If X and Yare subspaces of a normed linear space and X () Y is infinite
dimensional, then the set PH of the preceding lemma could be the unit sphere
of X () H. In the next theorem, this is generalized somewhat so that PH is
merely close to X.

THEOREM 1. Let Xl , X2 , and Y be subspaces ofa separable normed linear
space T for which Xl C X2 , Cl(X2 + Y) has infinite codimension, and
d(X1 , SH) = 0 ifSH is the unit sphere ofa subspace H of Y with finite codimen­
sion in Y. Then for any positive € there is a subspace -y of T such that Y is
€-near to rand r is a quasicomplement for all subspaces Z such that

Xl C ZC CI(X2 + Y).

Proof There is no loss of generality if we assume that € < t. Let {Un}
be a sequence of balls with radii less than I and centers on the unit sphere
of T for which lin{un} is dense in T if Un E Un for each n. Let P.. be the radius
of Un and let {fJn} be a sequence of positive numbers for which

(a) L~ 2i-1fJi < E,

(b) 2i-1fJi < PnfJn (l -2€)j(128 . 2i- n) if i > n.

If H is a subspace of Y with codimension 3k, let PH of Lemma 2 be

PH = {h : II h II = 1 and d(h, Xl) < t PkfJsk+l}'

It then follows from Lemma 2 that there is a normalized biorthogonal
sequence {(yn , gn)} for which {Y..} is fundamental and {g..} is total for Y,
d(YSk+l' Xl) < i PkfJSk+l' and II gn II :s;:; 2n-1 for all n. Choose a sequence
{wn } inductively so that

(c) tfJn < II W n [I < fJn for each n,

(d) d(wn , lin{X2 + Y, WI, •.• , W n-1}) > 1- Pn II W n II for all n,
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(e) for each k, there is an Xak+l in Xl and ftak+l in T such that some
scalar multiple of ftak+l belongs to Uak+l and

Yak+l + Wak+l = Xak+l + l1'ak+1 •

Clearly (c) and (d) can be satisfied for all n, if these and (e) can be satisfied
for n = 3k + 1. Suppose that WI,••. , Wak have been chosen and let
V = lin{X2 + Y, WI"'" Wak}' Since the center of Un has unit norm,
II Un II :( 1 + Pn < 2 if Un E Un • Choose Un so that

II Un - V II > i Pn > t Pn II Un II if V E V.
Let

3 Q Uak+l
ftak+l = 4: t-'ak+l II Uak+l II .

Choose an Xak+l in Xl for which

If Wak+l = Xak+l + l1'ak+1 - Yak+l , then (e) is satisfied and

(5)

(6)

(7)

II ftak+l II - II Xak+l - Yak+l II :( II Wak+l II ~ II ftak+l II + II Xak+l - Yak+! II,

so that it follows from (6), (7), and Pak+l < 1 that

! f3ak+l < II wak+lll < f3ak+1 (8)

and (c) is satisfied. To show that (d) is satisfied, note first that if V E V then

II Wak+l - v II = II Xak+l + ftak+l - Yak+l - v II
~ II ftak+l - v II - II Xak+l - Yak+l II.

It now follows from (5) and (7), and then (6) and (7), that

II Wak+l - v II ~ t Pak+lll ftak+l II - ! Pak+lf3ak+l

= ! Pak+lf3ak+l > 1Pak+l II Wak+l II,

so that (d) is satisfied.
Let f C Cl[lin{Yn + w n }] be the image of Y for the linear map L defined

by letting La:; aiYi) = :L; ai(Yi + Wi) and extending L to Y. Since

00 00

L II gi III1 Wi II < L 2i- I f3i < E,
I I

it follows from (iii) of Lemma 1 that Y is E-near to Y. It follows from (e)
and the choice of the spheres {Un} that Xl + f is dense in T, and from this
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that Z + f is dense in T if Xl C Z C CI (X2 + Y). To complete the proof, we
need only show that CI (X2 + Y) (') CI(f) = {O}. Suppose that v E CI(X2 + Y)
() CI(f) and II v II = 1. For each i, let gi be the continuous linear functional
on f for which UYi + Wi) = 8/ for allj. Then it follows from Lemma I that
{gn} is total for CI(f). Thus 0 < a :s:; I if

Igi(V) I
a = ~uP-11~'II .

';;:'1 g.

Choose n such that Ign(v) I > t a II gn II and then choose a finite sequence
{bi } for which

II v - [fgi(V)(Yi + Wi) + L MYi + Wi)] II < K, (9)
1 n+1

where Ie is the smaller of (1 - 2£) apn~n/[64(I - E)] and a. Then

II gn(V)Wn - [v - IIgi(V)(Yi + Wi) - gn(V)Yn - L biYi] II
1 n+1

< K + L II biWi II·
n+1

Since v E CI (X2 + Y), it follows from this inequality, (d) and the choice of
n that

1
1
6 pna II gn I1II Wn II < Ie + L II biWi II·

n+1

If i > n, it follows from (9) that Iglv) - bi I < Ie II gi II, so that

and

1
1
6 Pna II gn 111I W,. II < Ie + (Ie + a) L II gi 1III Wi II.

n+1

Now it follows from (i) of Lemma 1, II g,. 1III w.. 11 > t ~n , Ie :s:; a, II gi II :s:; 2i
-

1

and (8) that

3~(;!£ ) apnf3,. < K + 1 2a L II gi 1I1I will < Ie + 1~ L 2i-1~i'
€ € n+1 € ..+1

This and (b) imply that

1 - 2E 1 - 2E
32(1 - E) ap,.~n < K + 64(1 _ E) ap,.~n'
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Since K < (1 - 2e) ap..,B../[64(1 - e)], we have a contradiction and it has
been proved that CI (X2 + Y) n CI (Y) = {O}.

COROLLARY 1. Let X and Y be subspaces of a separable normed linear
space T for which X n Y is infinite dimensional and CI(X + Y) has infinite
codimension. Then for any positive e there is a subspace Y of T such that
Y is e-near to y- and y- is a quasicomplement for all Z such that

Xn YCZCCI(X+ Y).

COROLLARY 2. Let H be an infinite dimensional subspace of a normed
linear space T and let W be any closed subspace of infiinite codimension in T
that contains H. Then for any positive e and any subspace Y with H C Y C W,
there is a subspace Y such that Y is e-near to Y and Y is a quasicomplement
for all Z such that H C Z C w.

Proof For Corollary 1, let X n Y = Xl and Cl(X + Y) = X2 and apply
Theorem 1. For Corollary 2, apply Theorem 1 again with Xl = Hand
X 2 = W.

The next theorem summarizes the types of quasicomplements of X that
can be built from an arbitrary subspace Y.

THEOREM 2. Let X and Y be subspaces of a normed linear space T for
which X has infinite codimension. For any e > 0, X has a quasicomplement Y.
IfCI(X + Y) has finite codimension, then y- can be chosen, so that

(i) IfX n Y is finite dimensional, Y is e-near to a complemented subspace
ofY.

Whatever the codimension of Cl(X + Y),

(ii) If X n Y [or X n Y] is infinite dimensional, then X n Y is e-near
to Y and Y is a quasicomplement for all Z such that

X nYC ZCX [or X nYC ZCX].

If X is infinite dimensional and CI(X + Y) has infinite codimension, then y­
can be chosen so that

(iii) CI(X + Y) is e-near to y- and Y is a quasicomplement for all Z such
that XC ZC CI(X + Y); or

(iv) if X n Y [or X n Y] is infinite-dimensional, then -y can be chosen
so that Y is e-near to Y and Y is a quasicomplement for all Z such that

X nYC ZC CI(X + Y) [or X nYC ZC CI(X + Y)].

Proof (i) If CI(X + Y) has finite codimension and X n Y is finite
dimensional, there is a subspace Yo of Y which has finite codimension in Y
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and for which X n Yo = {O}. Also, Cl(X + Yo) has finite codimension in T,
so that there is a finite-dimensional subspace V of T such that Yo + V is a
quasicomplement of X. If U is a finite-dimensional complement of Yo in Y,
then V can be chosen so that U is sufficiently near a subspace U1 of V that
Y is E-near to Yo + U1 •

(ii) Let H of Corollary 2 be X n Y (or X n Y) and let W be X.
(iii) Let H of Corollary 2 be X and both Wand Y be Cl(X + Y).

(iv) This is Corollary I applied to X and Y (or X and Y).

It was shown by Murray [6, p. 94, Theorem] that if X and Yare quasi­
complements but not complements in a reflexive Banach space, then there
are quasicomplements Y1 and Y2 for X such that Y1 eye Y2 and neither Y1

nor Y2 is equal to Y. Actually, the constructions used yield Y1 of finite
codimension in Y and Y of finite codimension in Y2 • Mackey notes [5,
pp. 324-325] that reflexivity is not needed, but that completeness is critical
for Murray's arguments. The next two theorems strengthen these results.

THEOREM 3. Let X and Y be closed quasicomplements in a normed linear
space T. If the closures of X and Y in the completion of T are not comple­
ments, then X has a closed quasicomplement Y1 for which Y1 C Y and Y1

has infinite codimension in Y.

Proof Since the closures of X and Y in the completion of T are not
complements, d(X, SH) = 0 if SH is the unit sphere of a subspace H of
finite codimension in Y. Therefore it follows from Lemma 2 that Y has a
normalized biorthogonal sequence {(Yn , gn)} for which

(a) {Yn} is fundamental and {gn} is total for Y,

(b) d(Y3k+l' X) < (3k + 1)-1 Il::~l 2-2i ,

(c) II gn II ~ 2n - 1 for each n.

Let p(n, i) be a one-to-one map of ordered pairs (n, i) of positive integers
onto the set of positive integers such that for each n the sequence {p(n, i)}
contains infinitely many integers of type 3k + I. Let

(10)

let Y1 be the closed linear span of all \,(n,i)Y1J(n,i) - Y1J(n,i+l) , and Zl be the
closed linear span of all Y1J(n.l) . Clearly Cl( Y1 + Zl) = Y.

To show that Y1 has infinite codimension in Y, it is sufficient to show that
Y1 n Zl = {O}. Suppose Y E Y1 n Zl and II Y 11 = 1. Since {gn} is total for
Y and Y E Zl , there exist al =1= 0 and n such that
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where hE Cl[lin{Yi : i > p(n, I)}]. Since Y E Y1' there is a sequence of
numbers {ai} such that, for any k, there is an h for which

where hE Cl[lin{Ap(m,i) - yp(m,i+1) : m oF n or i > k}]. Since y E Z1' it
follows that gp(n,i+1) (y) = 0 if i;? I and therefore that we can use (c)
to obtain

Now multiply by suitable ,\'s and add, to obtain

(J)

< i I a1 I L2-i = t I a1 I,
o

so that

(12)

It follows from (c) and (10) that

(J) ~ ro 1
2: Ai II gi II ~ L ,\2i - 1 < L 2-2(i+1l2i-l = 8'
1 1 1

This together with (11) and (i) of Lemma 1 implies that

I ak I ~ (l + ! I a1 121- p (n.2» ~ II gp(n,k+1) II < (1 + i I a1 I) 2P<n,k+1), (13)

Whatever the value of ai' (12) and (13) are contradictory if k is sufficiently
large.
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To show that Y1 is a quasicomplement for X, it is sufficient to show that
X + Y1 is dense in T. To do this, it is sufficient to show that Y,p(n.1} belongs
to CI(X + Y1) for each n. Let pen, k) be of type 3p + 1. It follows from (b)
that there is an x in X for which

,p(n,k)

II yp(n,k) - x II < (p(n, k))-1 n 2-2i .
i~2

Let

(

k-1 )-1
= Y,p(n.1) - Jl A,p(n,i) Yp(n.k) •

Then Y E Y1 and

\ (

k-1 )-1 (k-1 )-1
\ Y,p(n.1) - Y - nA,p(n.i) x 1\ = II Y,p(n,k) - x II nA,p(n,i)

k

= II Y p(n,k) - x II n 22p(n.i)

i=2

p(n,k)

~ II Y,p(n,k) - x II n 22i

i=2

< (p(n, k))-1.

Since pen, k) can be arbitrarily large, this completes the proof of Theorem 3.

THEOREM 4. Let X and Y be quasicomplements in a separable reflexive
Banach space B. If X and Yare not complements for B, then X has a quasi­
complement Y2 for which Y C Y2 and Y has infinite codimension in Y2 •

Proof Let x' and Y' be the sets of continuous linear functionals that
are identically zero on X or Y, respectively. Then X' n Y' = {O}, since
X + Y is dense in B. Also, CI(X' + y') = B*, since otherwise there would
be a nonzero z in B such that fez) = 0 if f E CI(X' + Y') and this would
imply that z EX n Y. Thus X' and Y' are quasicomplements in B* (also see
[6, p. 85, Corollary]). Let WEB n "" (X + Y). Then it is easy to see that X
and lin(Y, w) are quasicomplements for T, so that X' has a quasicomplement
that is a proper subspace of Y'. This implies that X' and Y' are not comple­
ments and it then follows from Theorem 3 that there is a closed subspace Z'
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of Y' that is of infinite codimension in Y' and such that Z' is a quasicomple­
ment for X' in B*. Let Y2 be the set of all yin B withf(y) = 0 for allfin
Z'. Since B is reflexive, Y has infinite codimension in Y2 • Since X' and Z'
are quasicomplements for B* and B is reflexive, it follows from the first
part of this proof that X and Y2 are quasicomplements for B.

It is not clear whether reflexivity is needed in Theorem 4. However, it
seems reasonable to conjecture that the theorem is false without this
hypothesis.

The next corollary follows from Corollary 1 and Theorems 3 and 4.

COROLLARY 3. Let X and Y be subspace of a separable reflexive Banach
space. IfX n Y is infinite dimensional and Cl(X + Y) has infinite codimension,
then there are subspaces Xl , X2 , YI , rand Y2 such that

(i) Xl C X n Y and Xl has infinite codimension in X n Y, Cl(X + Y) C X2

and Cl(X + Y) has infinite codimension in X2 ;

(ii) Y is e-near to Y,
(iii) YI C r C Y2 , YI has infinite codimension in Y, and Y has infinite

codimension in Y2 ;

(iv) U and V are quasicomplements if Xl C U C X2 and YI C V C Y2 •

COROLLARY 4. Let B be a separable Banach space that has an infinite
dimensional subspace isomorphic to Hilbert space. Then for any e > 0 there
are subspaces HI , H2 , H a , and H4 isomorphic to Hilbert space and such that
HI is e-near to H4 , HI C H2 , Ha C H4 , HI has infinite codimension in H 2 ,

Ha has infinite codimension in H4 , and subspaces X and Y of Bare quasi­
complements if

Proof Let H2 be any subspace that is isomorphic to Hilbert space and
has infinite codimension in B, and let HI be any infinite-dimensional subspace
of H 2 that has infinite codimension in H 2 • It then follows from Corollary 2
that there is a subspace H4 such that HI is e-near to H4 and H4 is a quasi­
complement for all X such that

Theorem 3 gives a subspace H a of H 4 that has infinite codimension in H 4

and is a quasicomplement for HI . If HI C XC H 2 and H a C Y C H4 , then
X n YC H2 n H4 = {O}. Since X + y:J HI + H a , X + Y is dense in B
and X and Yare quasicomplements.
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